Fabrication of functional hydrogels based on the molecular membrane of amphiphilic gelator

Clara Imura

Ochanomizu Univesity

Nucleic acids have been employed as programmable building blocks in the construction of various DNA nanostructures through self-assembly, which is based on Watson–Crick base pairing. DNA nanostructures with stimuli-responsive properties have been used in various applications such as sensors, controlled release and delivery, and actuators. Here, we describe the design and synthesis of a new reduction-cleavable spacer (RCS) based on a nitrobenzene scaffold for constructing reduction-responsive oligonucleotides according to standard phosphoramidite chemistry. In addition, we demonstrate that the introduction of the RCS in the middle of an oligonucleotide (30 nt) enables the construction of a self-assembled microsphere capable of exhibiting a reduction-responsive disassembly. Since the preparation of RCS-based phosphoramidite reagent for the construction of oligonucleotides containing RCS is straightforward, the RCS could allow for the introduction of the reduction-responsiveness into various functional oligonucleotides and nucleic acid-based architectures toward therapeutic and diagnostic applications in near future.